If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+32=54
We move all terms to the left:
3x^2+32-(54)=0
We add all the numbers together, and all the variables
3x^2-22=0
a = 3; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·3·(-22)
Δ = 264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{264}=\sqrt{4*66}=\sqrt{4}*\sqrt{66}=2\sqrt{66}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{66}}{2*3}=\frac{0-2\sqrt{66}}{6} =-\frac{2\sqrt{66}}{6} =-\frac{\sqrt{66}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{66}}{2*3}=\frac{0+2\sqrt{66}}{6} =\frac{2\sqrt{66}}{6} =\frac{\sqrt{66}}{3} $
| 3x-4+9x+9-8x=29 | | 3(2x+3=6x+9 | | 12+5x(2x+7)=115 | | 12+5x(2x+7)=90 | | 3x+5x=616 | | k+49=58 | | -4u=4(-2u+3)+6u | | 5x+9=15x+45 | | 70=y-5 | | x²+x²=22.5 | | 3(r+4)-5=-5 | | 2−5(c+8.5)=18 | | 8.7=2.3(n+2)+1.8 | | 77=t+67 | | b-10=5, | | -2+q=8q-6q-10 | | 4z/7+4=-6 | | 1/4(x-8)=-14 | | 2c=68 | | 7n=-2(-4n+5) | | 3.4w=3.15 | | 4(x–1)-3(x–2)=-8 | | -2(10z-2)=-3(-2+6z) | | 30+6x=24 | | 79*10^5x=78 | | 1=3(g-6)-5 | | 5^x-5=20 | | -9p+10=5-10p | | -3(j-9)=3 | | 3x+41=90 | | 12x+20=2x+4 | | 2(n-6.39)-1.5=12.14 |